LogoLogo
Home PageLoginSQL Generator
  • 🖥️What is Rasgo?
  • 🚀Setting Up Rasgo
    • Connect Rasgo to your Data
  • 🛠️Using Rasgo
    • Modeling your Data
    • Prompt Guide
    • AI Notes
    • AI-Generated Documentation
    • AI Readiness Score
    • Reports
    • Additional Features
    • Admin Settings
  • 🎉What's New
  • Integrations
    • ❄️Snowflake
    • 🔍BigQuery
    • 🔴Redshift
    • 🧱DeltaLake (via Databricks)
    • 💬OpenAI
    • 🅰️Anthropic
    • ✨Gemini
    • ☁️dbt Cloud
  • 🔐API
    • Table Metadata
    • Column Metadata
  • Reference
    • Status Page
    • Frequently Asked Questions
      • Rasgo Architecture
      • Contacting Rasgo Support
      • What does Rasgo do with my data?
  • Rasgo Graveyard
    • PyRasgo 0.3
      • Source Methods
        • publish.source_data()
        • read.source_data()
        • get.data_sources()
        • get.data_source()
      • Feature Methods
        • feature.get_stats()
        • publish.features_from_source_code()
        • publish.feature_from_source()
        • publish.features()
        • read.feature_data()
        • get.feature_attributes()
        • get.features()
        • get.feature()
      • Collection Methods
        • collection.add_attributes()
        • collection.preview()
        • collection.get_compatible_features()
        • read.collection_snapshot_data()
        • read.collection_data()
        • get.collection_attributes()
        • get.collections()
        • get.collection()
      • Features yml file
      • version 0.3
    • Transforms Overview
      • Build your Own Transform
        • Argument Types
        • Make your own Transform
        • SQL Best Practices
        • Utilities
          • cleanse_name()
    • All Transforms
      • Aggregate String
      • Aggregate
      • Apply
      • Bin
      • Cast
      • Clean
      • Conditional Agg
      • Correlation
      • Cumulative Agg
      • Datarobot Score
      • Dateadd
      • Datediff
      • Datepart
      • Datespine Groups
      • Datespine
      • Datetrunc
      • Describe
      • Drop Columns
      • Dropna
      • Encode Values
      • Entropy
      • Extract Sequences
      • Filter
      • Funnel
      • Heatmap
      • Histogram
      • If Then
      • Join
      • Joins
      • Label Encode
      • Lag
      • Latest
      • Lead
      • Linear Regression
      • Market Basket
      • Math
      • Metric Plot
      • Metric
      • Min Max Scaler
      • Moving Avg
      • New Columns
      • One Hot Encode
      • Order
      • Pivot Table
      • Plot
      • Prefix
      • Profile Column
      • Query
      • Rank
      • Ratio With Shrinkage
      • Remove Duplicates
      • Remove Outliers
      • Rename
      • Replace Missing
      • Replace String
      • Reshape
      • Rolling Agg
      • Rsi
      • Sample Class
      • Sample
      • Sankey
      • Scale Columns
      • Select
      • Sliding Slope
      • Standard Scaler
      • Suffix
      • Summarize Flatlines
      • Summarize Islands
      • Summarize
      • Target Encode
      • Text To Sql
      • Timeseries Agg
      • To Date
      • Train Test Split
      • Union
      • Unions
      • Unpivot
      • Uppercase Columns
      • Vlookup
Powered by GitBook
On this page

Was this helpful?

  1. Using Rasgo

AI-Generated Documentation

PreviousAI NotesNextAI Readiness Score

Last updated 1 year ago

Was this helpful?

When a dataset is first activated, Rasgo AI indexes it and then automatically generates documentation for it. This documentation includes:

  • Notes: notes that describe the dataset wholistically such as the nature of the data, its granularity, and potential use cases for it

  • Column Descriptions: short descriptions for each column that describe the format of values within the column and what the data indicates

Column descriptions will also have an AI-generated 'status', indicating if AI is confident in its assessment of the data or if it is uncertain. The yellow icon indicates that the AI is uncertain and wants you to modify the column description. Once you do, it will update to green and your column readiness score will improve.

You can filter on 'Status': 'Needs Input' to only see columns that you need to review.

How it Works

  1. When a table is activated, Rasgo indexes the schema of the table (table name, column names, and column data types)

  2. Rasgo kicks off an AI documentation process for the table

  3. The AI documentation process first looks at a short sample of the data for the entire table and generates dataset notes

  4. Next, it runs through the columns in chunks and samples values from each column to help write an accurate description for the column

  5. Finally, it evaluates its own confidence level in generating the column description to see if it needs further human review

AI-generated documentation is intended to be a great starting point, but it should not be relied on as 100% accurate . The best way to use this documentation is to review and update it with additional context that the AI does not have about your business.

🛠️
😄