Scale Columns

This function scales a column through standard or min/max scaling methods.

Parameters

NameTypeDescriptionIs Optional

columns_to_scale

column_list

A list of numeric columns that you want to scale

method

string

The method used to scale the column values ('standard' or 'min_max'). If 'standard' is chosen, this function scales a column by removing the mean and scaling by standard deviation. If 'min_max' is selected, this function scales a column by subtracting the min value in the column and dividing by the range between the max and min values.

overwrite_columns

boolean

Optional: if true, the scaled values will overwrite values in 'columns_to_scale'. If false, new columns with the scaled values will be generated.

True

averages

value_list

Only applies when 'standard' method is chosen. This is an optional argument representing a list of the static averages to use for each column in columns_to_scale. If omitted, the averages are calculated directly off each column.

True

standarddevs

int_list

Only applies when 'standard' method is chosen. This is an optional argument representing a list of the static standard deviations to use for each column in columns_to_scale. If omitted, the values are calculated directly off each column.

True

minimums

value_list

Only applies when 'min_max' method is chosen. This is an optional argument representing a list of the static minimums to use for each column in columns_to_scale. If omitted, the minimums are calculated directly off each column.

True

maximums

value_list

Only applies when 'min_max' method is chosen. This is an optional argument representing a list of the static maximums to use for each column in columns_to_scale. If omitted, the values are calculated directly off each column.

True

Example

ds = rasgo.get.dataset(id)

ds2 = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'], method='standard')
ds2.preview()

ds2b = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'],
  averages=[68, 52],
  standarddevs=[12, 8],
  method='standard')
ds2b.preview()

ds2c = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'],
  minimums=[52, 4],
  maximums=[101, 81],
  method='min_max')
ds2c.preview()

Source Code

Last updated