LogoLogo
Home PageLoginSQL Generator
  • 🖥️What is Rasgo?
  • 🚀Setting Up Rasgo
    • Connect Rasgo to your Data
  • 🛠️Using Rasgo
    • Modeling your Data
    • Prompt Guide
    • AI Notes
    • AI-Generated Documentation
    • AI Readiness Score
    • Reports
    • Additional Features
    • Admin Settings
  • 🎉What's New
  • Integrations
    • ❄️Snowflake
    • 🔍BigQuery
    • 🔴Redshift
    • 🧱DeltaLake (via Databricks)
    • 💬OpenAI
    • 🅰️Anthropic
    • ✨Gemini
    • ☁️dbt Cloud
  • 🔐API
    • Table Metadata
    • Column Metadata
  • Reference
    • Status Page
    • Frequently Asked Questions
      • Rasgo Architecture
      • Contacting Rasgo Support
      • What does Rasgo do with my data?
  • Rasgo Graveyard
    • PyRasgo 0.3
      • Source Methods
        • publish.source_data()
        • read.source_data()
        • get.data_sources()
        • get.data_source()
      • Feature Methods
        • feature.get_stats()
        • publish.features_from_source_code()
        • publish.feature_from_source()
        • publish.features()
        • read.feature_data()
        • get.feature_attributes()
        • get.features()
        • get.feature()
      • Collection Methods
        • collection.add_attributes()
        • collection.preview()
        • collection.get_compatible_features()
        • read.collection_snapshot_data()
        • read.collection_data()
        • get.collection_attributes()
        • get.collections()
        • get.collection()
      • Features yml file
      • version 0.3
    • Transforms Overview
      • Build your Own Transform
        • Argument Types
        • Make your own Transform
        • SQL Best Practices
        • Utilities
          • cleanse_name()
    • All Transforms
      • Aggregate String
      • Aggregate
      • Apply
      • Bin
      • Cast
      • Clean
      • Conditional Agg
      • Correlation
      • Cumulative Agg
      • Datarobot Score
      • Dateadd
      • Datediff
      • Datepart
      • Datespine Groups
      • Datespine
      • Datetrunc
      • Describe
      • Drop Columns
      • Dropna
      • Encode Values
      • Entropy
      • Extract Sequences
      • Filter
      • Funnel
      • Heatmap
      • Histogram
      • If Then
      • Join
      • Joins
      • Label Encode
      • Lag
      • Latest
      • Lead
      • Linear Regression
      • Market Basket
      • Math
      • Metric Plot
      • Metric
      • Min Max Scaler
      • Moving Avg
      • New Columns
      • One Hot Encode
      • Order
      • Pivot Table
      • Plot
      • Prefix
      • Profile Column
      • Query
      • Rank
      • Ratio With Shrinkage
      • Remove Duplicates
      • Remove Outliers
      • Rename
      • Replace Missing
      • Replace String
      • Reshape
      • Rolling Agg
      • Rsi
      • Sample Class
      • Sample
      • Sankey
      • Scale Columns
      • Select
      • Sliding Slope
      • Standard Scaler
      • Suffix
      • Summarize Flatlines
      • Summarize Islands
      • Summarize
      • Target Encode
      • Text To Sql
      • Timeseries Agg
      • To Date
      • Train Test Split
      • Union
      • Unions
      • Unpivot
      • Uppercase Columns
      • Vlookup
Powered by GitBook
On this page
  • Parameters
  • Example
  • Source Code

Was this helpful?

  1. Rasgo Graveyard
  2. All Transforms

Scale Columns

This function scales a column through standard or min/max scaling methods.

Parameters

Name
Type
Description
Is Optional

columns_to_scale

column_list

A list of numeric columns that you want to scale

method

string

The method used to scale the column values ('standard' or 'min_max'). If 'standard' is chosen, this function scales a column by removing the mean and scaling by standard deviation. If 'min_max' is selected, this function scales a column by subtracting the min value in the column and dividing by the range between the max and min values.

overwrite_columns

boolean

Optional: if true, the scaled values will overwrite values in 'columns_to_scale'. If false, new columns with the scaled values will be generated.

True

averages

value_list

Only applies when 'standard' method is chosen. This is an optional argument representing a list of the static averages to use for each column in columns_to_scale. If omitted, the averages are calculated directly off each column.

True

standarddevs

int_list

Only applies when 'standard' method is chosen. This is an optional argument representing a list of the static standard deviations to use for each column in columns_to_scale. If omitted, the values are calculated directly off each column.

True

minimums

value_list

Only applies when 'min_max' method is chosen. This is an optional argument representing a list of the static minimums to use for each column in columns_to_scale. If omitted, the minimums are calculated directly off each column.

True

maximums

value_list

Only applies when 'min_max' method is chosen. This is an optional argument representing a list of the static maximums to use for each column in columns_to_scale. If omitted, the values are calculated directly off each column.

True

Example

ds = rasgo.get.dataset(id)

ds2 = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'], method='standard')
ds2.preview()

ds2b = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'],
  averages=[68, 52],
  standarddevs=[12, 8],
  method='standard')
ds2b.preview()

ds2c = ds.scale_columns(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'],
  minimums=[52, 4],
  maximums=[101, 81],
  method='min_max')
ds2c.preview()

Source Code

PreviousSankeyNextSelect

Last updated 2 years ago

Was this helpful?

https://github.com/rasgointelligence/RasgoTransforms/blob/main/rasgotransforms/rasgotransforms/transforms/scale_columns/scale_columns.sql