Reshape

Pivot: Transpose unique values in a single column to generate multiple columns, aggregating as needed. The pivot will dynamically generate a column per unique value, or you can pass a list_of_vals with the unique values you wish to create columns for. Unpivot: Opposite of pivot, transforms a table by transforming columns into rows

Parameters

Name
Type
Description
Is Optional

method

string

Method to reshape table 'pivot' to transpose unique values in a column to generate multiple columns or 'unpivot' to do the opposite.

values

column

column to pivot and aggregate. Required for 'pivot' method.

True

columns

column

Pivot: column with row values that will become columns. Required for 'pivot' method. Unpivot: List of columns in the source table that will be narrowed into a single pivot column. The column names will populate name_column, and the column values will populate value_column.

True

agg_method

agg

method of aggregation (i.e. sum, avg, min, max, etc.). Required for 'pivot' method.

True

value_column

string

The name to assign to the generated column that will be populated with the values from the columns in the column list. Required for 'unpivot' method.

True

name_column

string

The name to assign to the generated column that will be populated with the names of the columns in the column list. Required for 'unpivot' method.

True

dimensions

column_list

Applicable to 'pivot' method only. Dimension columns after the pivot runs.

True

list_of_vals

string_list

optional argument to override the dynamic lookup of all values in the value_column and only pivot a provided list of values

True

Example

Pull a source Dataset and preview it:

ds = rasgo.get.dataset(id)
print(ds.preview())
DATE
SYMBOL
CLOSE

0

1990-09-26

APA

4.8797

1

1990-08-06

APA

4.3312

2

1990-06-12

APA

3.8123

3

2007-10-19

XRX

36.0728

4

2007-08-20

XRX

34.4498

5

2007-07-10

XRX

42.5646

6

2007-03-07

XRX

36.3541

7

2007-03-01

XRX

37.1547

8

2007-01-04

XRX

36.5489

9

2006-07-13

XRX

29.7325

Transform the Dataset and preview the result:

ds2 = ds.reshape(
  dimensions=['DATE'],
  values='CLOSE',
  columns='SYMBOL',
  agg_method='AVG',
  list_of_vals=['JP','GOOG','DIS','APLE'],
  method='pivot'
)
ds2.preview()

ds3 = ds2.reshape(
  value_column="CLOSE",
  name_column="SYMBOL",
  columns=['JP','GOOG','DIS','APLE'],
  method='unpivot'
)
ds3.preview()
DATE
JP
GOOG
DIS
APLE

0

2013-07-26

441.022

59.0729

1

2017-11-21

19.7923

1034.49

99.3686

16.48

2

2006-11-17

248.464

27.0257

3

2005-09-12

154.292

20.39

4

1999-07-01

22.1751

5

1998-02-03

27.3093

6

1996-04-22

15.2845

7

2017-07-25

7.221

950.7

102.668

15.0863

8

2006-12-08

241.151

28.2154

9

2016-12-12

8.1188

789.27

99.65

15.739

Source Code

Last updated