LogoLogo
Home PageLoginSQL Generator
  • ๐Ÿ–ฅ๏ธWhat is Rasgo?
  • ๐Ÿš€Setting Up Rasgo
    • Connect Rasgo to your Data
  • ๐Ÿ› ๏ธUsing Rasgo
    • Modeling your Data
    • Prompt Guide
    • AI Notes
    • AI-Generated Documentation
    • AI Readiness Score
    • Reports
    • Additional Features
    • Admin Settings
  • ๐ŸŽ‰What's New
  • Integrations
    • โ„๏ธSnowflake
    • ๐Ÿ”BigQuery
    • ๐Ÿ”ดRedshift
    • ๐ŸงฑDeltaLake (via Databricks)
    • ๐Ÿ’ฌOpenAI
    • ๐Ÿ…ฐ๏ธAnthropic
    • โœจGemini
    • โ˜๏ธdbt Cloud
  • ๐Ÿ”API
    • Table Metadata
    • Column Metadata
  • Reference
    • Status Page
    • Frequently Asked Questions
      • Rasgo Architecture
      • Contacting Rasgo Support
      • What does Rasgo do with my data?
  • Rasgo Graveyard
    • PyRasgo 0.3
      • Source Methods
        • publish.source_data()
        • read.source_data()
        • get.data_sources()
        • get.data_source()
      • Feature Methods
        • feature.get_stats()
        • publish.features_from_source_code()
        • publish.feature_from_source()
        • publish.features()
        • read.feature_data()
        • get.feature_attributes()
        • get.features()
        • get.feature()
      • Collection Methods
        • collection.add_attributes()
        • collection.preview()
        • collection.get_compatible_features()
        • read.collection_snapshot_data()
        • read.collection_data()
        • get.collection_attributes()
        • get.collections()
        • get.collection()
      • Features yml file
      • version 0.3
    • Transforms Overview
      • Build your Own Transform
        • Argument Types
        • Make your own Transform
        • SQL Best Practices
        • Utilities
          • cleanse_name()
    • All Transforms
      • Aggregate String
      • Aggregate
      • Apply
      • Bin
      • Cast
      • Clean
      • Conditional Agg
      • Correlation
      • Cumulative Agg
      • Datarobot Score
      • Dateadd
      • Datediff
      • Datepart
      • Datespine Groups
      • Datespine
      • Datetrunc
      • Describe
      • Drop Columns
      • Dropna
      • Encode Values
      • Entropy
      • Extract Sequences
      • Filter
      • Funnel
      • Heatmap
      • Histogram
      • If Then
      • Join
      • Joins
      • Label Encode
      • Lag
      • Latest
      • Lead
      • Linear Regression
      • Market Basket
      • Math
      • Metric Plot
      • Metric
      • Min Max Scaler
      • Moving Avg
      • New Columns
      • One Hot Encode
      • Order
      • Pivot Table
      • Plot
      • Prefix
      • Profile Column
      • Query
      • Rank
      • Ratio With Shrinkage
      • Remove Duplicates
      • Remove Outliers
      • Rename
      • Replace Missing
      • Replace String
      • Reshape
      • Rolling Agg
      • Rsi
      • Sample Class
      • Sample
      • Sankey
      • Scale Columns
      • Select
      • Sliding Slope
      • Standard Scaler
      • Suffix
      • Summarize Flatlines
      • Summarize Islands
      • Summarize
      • Target Encode
      • Text To Sql
      • Timeseries Agg
      • To Date
      • Train Test Split
      • Union
      • Unions
      • Unpivot
      • Uppercase Columns
      • Vlookup
Powered by GitBook
On this page
  • Parameters
  • Example
  • Source Code

Was this helpful?

  1. Rasgo Graveyard
  2. All Transforms

Standard Scaler

This function scales a column by removing the mean and scaling by standard deviation.

If you omit averages and standarddevs, the function will compute the average and standard deviation of each column. Pass averages and standarddevs values if you want to override the calculation with static values for each column.

Parameters

Name
Type
Description
Is Optional

columns_to_scale

column_list

A list of numeric columns that you want to scale

averages

value_list

An optional argument representing a list of the static averages to use for each column in columns_to_scale. If omitted, the averages are calculated directly off each column.

True

standarddevs

int_list

An optional argument representing a list of the static standard deviations to use for each column in columns_to_scale. If omitted, the values are calculated directly off each column.

True

overwrite_columns

boolean

Optional: if true, the scaled values will overwrite values in 'columns_to_scale'. If false, new columns with the scaled values will be generated.

True

Example

ds = rasgo.get.dataset(id)

ds2 = ds.standard_scaler(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'])
ds2.preview()

ds2b = ds.standard_scaler(columns_to_scale=['DS_DAILY_HIGH_TEMP','DS_DAILY_LOW_TEMP'],
  averages=[68, 52],
  standarddevs=[12, 8])
ds2b.preview()

Source Code

PreviousSliding SlopeNextSuffix

Last updated 2 years ago

Was this helpful?

LogoRasgoTransforms/standard_scaler.sql at main ยท rasgointelligence/RasgoTransformsGitHub