LogoLogo
Home PageLoginSQL Generator
  • ๐Ÿ–ฅ๏ธWhat is Rasgo?
  • ๐Ÿš€Setting Up Rasgo
    • Connect Rasgo to your Data
  • ๐Ÿ› ๏ธUsing Rasgo
    • Modeling your Data
    • Prompt Guide
    • AI Notes
    • AI-Generated Documentation
    • AI Readiness Score
    • Reports
    • Additional Features
    • Admin Settings
  • ๐ŸŽ‰What's New
  • Integrations
    • โ„๏ธSnowflake
    • ๐Ÿ”BigQuery
    • ๐Ÿ”ดRedshift
    • ๐ŸงฑDeltaLake (via Databricks)
    • ๐Ÿ’ฌOpenAI
    • ๐Ÿ…ฐ๏ธAnthropic
    • โœจGemini
    • โ˜๏ธdbt Cloud
  • ๐Ÿ”API
    • Table Metadata
    • Column Metadata
  • Reference
    • Status Page
    • Frequently Asked Questions
      • Rasgo Architecture
      • Contacting Rasgo Support
      • What does Rasgo do with my data?
  • Rasgo Graveyard
    • PyRasgo 0.3
      • Source Methods
        • publish.source_data()
        • read.source_data()
        • get.data_sources()
        • get.data_source()
      • Feature Methods
        • feature.get_stats()
        • publish.features_from_source_code()
        • publish.feature_from_source()
        • publish.features()
        • read.feature_data()
        • get.feature_attributes()
        • get.features()
        • get.feature()
      • Collection Methods
        • collection.add_attributes()
        • collection.preview()
        • collection.get_compatible_features()
        • read.collection_snapshot_data()
        • read.collection_data()
        • get.collection_attributes()
        • get.collections()
        • get.collection()
      • Features yml file
      • version 0.3
    • Transforms Overview
      • Build your Own Transform
        • Argument Types
        • Make your own Transform
        • SQL Best Practices
        • Utilities
          • cleanse_name()
    • All Transforms
      • Aggregate String
      • Aggregate
      • Apply
      • Bin
      • Cast
      • Clean
      • Conditional Agg
      • Correlation
      • Cumulative Agg
      • Datarobot Score
      • Dateadd
      • Datediff
      • Datepart
      • Datespine Groups
      • Datespine
      • Datetrunc
      • Describe
      • Drop Columns
      • Dropna
      • Encode Values
      • Entropy
      • Extract Sequences
      • Filter
      • Funnel
      • Heatmap
      • Histogram
      • If Then
      • Join
      • Joins
      • Label Encode
      • Lag
      • Latest
      • Lead
      • Linear Regression
      • Market Basket
      • Math
      • Metric Plot
      • Metric
      • Min Max Scaler
      • Moving Avg
      • New Columns
      • One Hot Encode
      • Order
      • Pivot Table
      • Plot
      • Prefix
      • Profile Column
      • Query
      • Rank
      • Ratio With Shrinkage
      • Remove Duplicates
      • Remove Outliers
      • Rename
      • Replace Missing
      • Replace String
      • Reshape
      • Rolling Agg
      • Rsi
      • Sample Class
      • Sample
      • Sankey
      • Scale Columns
      • Select
      • Sliding Slope
      • Standard Scaler
      • Suffix
      • Summarize Flatlines
      • Summarize Islands
      • Summarize
      • Target Encode
      • Text To Sql
      • Timeseries Agg
      • To Date
      • Train Test Split
      • Union
      • Unions
      • Unpivot
      • Uppercase Columns
      • Vlookup
Powered by GitBook
On this page
  • Parameters
  • Example
  • Source Code

Was this helpful?

  1. Rasgo Graveyard
  2. All Transforms

Lead

PreviousLatestNextLinear Regression

Last updated 2 years ago

Was this helpful?

Lead shifts your features on a partition index, creating a look-forward feature offset by an amount. Lead supports generating multiple leads in one transform by generating each unique combination of columns and amounts from your inputs.

Parameters

Name
Type
Description
Is Optional

columns

column_list

names of column(s) you want to lead

amounts

int_list

Magnitude of amounts you want to use for the lead.

partition

column_list

name of column(s) to partition by for the lead

True

order_by

column_list

name of column(s) to order by in the final data set

True

Example

ds = rasgo.get.dataset(id)

ds2 = ds.lead(columns=['OPEN', 'CLOSE'], amounts=[1,2,3,7], order_by=['DATE, 'TICKER'], partition=['TICKER'])
ds2.preview()

Source Code

LogoRasgoTransforms/lead.sql at main ยท rasgointelligence/RasgoTransformsGitHub