Links

Joins

Join one or more datasets together using SQL joins. Supported join types include INNER, LEFT, RIGHT, FULL OUTER, and CROSS.

Parameters

Name
Type
Description
Is Optional
join_dicts
join_dicts
List of 'join_dict' dictionaries which specify how to perform each join. Each Dictionary will have the following values 1. join_type: Literal['LEFT', 'RIGHT', 'INNER', 'FULL OUTER', 'CROSS'] - Type of Join to Perform 2. table_a: str dataset.FQTN (only needed if not first 'join_dict' in list) - Specfies the table/fqtn to join in the FROM ... clause - This would be the source_table by default if the first dictionary 3. table_b: str ( dataset.FQTN) - Specifies the table/fqtn to join in the <join_type> JOIN ... clause 4. join_on: Dict[str, str] - Dictionary for which columns to join on between table A and table B - Key value pairs determine the ON part of the clause, like the string below ON <table_A_col_name_dict_key> = table_B_col_name_dict_value> - join_on dict can contain mutiple values Example: python internet_sales = rasgo.get.dataset(74) customer = rasgo.get.dataset(55) product = rasgo.get.dataset(75) ds = product.join(join_dicts=[ { 'table_b': internet_sales.fqtn, 'join_type':'LEFT', 'join_prefix_b':'product', 'join_on':{'PRODUCTKEY':'PRODUCTKEY'} }, { 'table_a':internet_sales.fqtn, 'table_b':customer.fqtn, 'join_on':{'CUSTOMERKEY':'CUSTOMERKEY', 'DUEDATE': 'BIRTHDATE'}, 'join_type':'INNER', 'join_prefix_b':'sales' } ]) print(ds.sql) Will produce the following SQL: sql SELECT ... FROM ADVENTUREWORKS.PUBLIC.DIMPRODUCT LEFT JOIN ADVENTUREWORKS.PUBLIC.FACTINTERNETSALES ON DIMPRODUCT.PRODUCTKEY = FACTINTERNETSALES.PRODUCTKEY INNER JOIN ADVENTUREWORKS.PUBLIC.DIMCUSTOMER ON FACTINTERNETSALES.CUSTOMERKEY = DIMCUSTOMER.CUSTOMERKEY AND FACTINTERNETSALES.DUEDATE = DIMCUSTOMER.BIRTHDATE
​

Example

internet_sales = rasgo.get.dataset(74)
customer = rasgo.get.dataset(55)
product = rasgo.get.dataset(75)
​
ds = product.joins(join_dicts=[
{
'table_b': internet_sales.fqtn,
'join_type':'LEFT',
'join_prefix_b':'product',
'join_on':{'PRODUCTKEY':'PRODUCTKEY'}
},
{
'table_a':internet_sales.fqtn,
'table_b':customer.fqtn,
'join_on':{'CUSTOMERKEY':'CUSTOMERKEY', 'DUEDATE': 'BIRTHDATE'},
'join_type':'INNER',
'join_prefix_b':'sales'
},
{
'table_a':internet_sales.fqtn,
'table_b':customer.fqtn,
'join_type':'CROSS'
}
])
ds.preview()

Source Code

Last modified 1yr ago